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Entrainment rates in turbulent shear flows 

By S. T. PAIZIS AND W. H. SCHWARZ 
Department of Mechanics and Materials Science, The Johns Hopkins University, 

Baltimore, Maryland 21218 

(Received 7 November 1973) 

The rate of entrainment of ambient fluid across a turbulent interface has been 
defined as the mean rate of increase of turbulent fluid in the flow direction. 
Experiments to measure this quantity by conditional sampling in a two-dimen- 
sional wall jet are described. Further, estimates of this entrainment rate were 
made for the turbulent boundary layer, two-dimensional wake, two-dimensional 
jet and round jet and the results are discussed. 

1. Introduction 
This investigation is concerned with the phenomenon of entrainment, which 

is a feature of all free turbulent shear flows. The very rapid spreading of such 
flows as wakes and jets (as compared with their laminar counterparts) is as- 
cribed to the assimilation of the surrounding non-turbulent fluid by the turbu- 
lence. The exact mechanism of this process is not fully understood. It is generally 
accepted that the originally irrotational fluid acquires vorticity by viscous 
diffusion (there is no other way) and this vorticity is amplified by the rate-of- 
strain field (see Phillips 1972). It can be argued further that this process must 
lead to a sharp interface which separates the turbulent and non-turbulent 
regions. The existence of such an interface is well known. It can be treated as a 
front which propagates into the irrotational field. 

It will be assumed that the interface is a continuous surface whose location is 
a random function of space and time. The aim will be to define a meaningful 
entrainment rate and to relate this to the global properties of turbulent flows. 

2. Experimental details 
Properties of the turbulent zone were measured in a two-dimensional turbulent 

wall jet. The purpose, as is showii below, was to determine the entrainment rate 
from these properties. The wall jet flow is described in detail by Paizis (1972). 

The streamwise velocity U ( t )  was obtained using Thermo-Systems Model 
1274 boundary-layer probes and Thermo-Systems Model 1010 constant-tempera- 
ture anemometers and linearizers. The probes were calibrated against a Pitot 
tube in a low turbulence wind tunnel. The intermittency function l ( t )  was con- 
structed by suitably processing the anemometer output in a turbulence detector 
circuit (Paizis & Schwarz 1974). 

Conveiitional mean velocities were measured by using a DYMEC Model 2210 
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FIGURE 1.Zone-average measurement arrangement. 

voltage-to-frequency converter coupled with a Beckman 6 148 EPUT and 
timer. The signal from the linearizer formed the input to the voltage-to-fre- 
quency converter, whose output is a pulse train with frequency proportional to 
the amplitude of the incoming signal. The number of pulses was then counted 
over a fixed period (usually 100 s) by the Beckman counter. For the measurement 
of intensities, the d.c. component of the linearizer output was blocked using a 
high-pass RC filter. The resulting signal was squared by an Analog Devices 
4 2 6 8  multiplier and the mean value of the multiplier output measured as above. 

Turbulent zone averages were measured by gating the voltage-to-frequency 
output with the intermittency signal. I n  addition a delay of the linearizer output 
was necessary in order to match the delayed intermittency signal. This was 
achieved using an Ad-Yu 802 G delay line. The intermittency signal was formed 
from the velocity signal before delay. Three counters were used so that U ,  U I  
and I (or u2, u2f and j )  could be measured simultaneously, thereby reducing 

- -  

- -  
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errors considerably. Since only one of the counters was equipped to  count 
automatically for l O O s ,  its timing pulses (‘start’ and ‘stop’) were used to gate 
the inputs to the other two counters. The gating signal was obtained from a 
flip-flop circuit which was controlled by the ‘start’ and ‘stop’ pulses. 

The intermittency factor was measured in the conventional manner, by gating 
a high frequency wave (100 kHz) with the intermittency signal and counting the 
resulting pulse train. The arrangement described in this section is illustrated in 
figure 1. 

3. A measure of entrainment 
In order to relate the entrainment to other properties of the turbulent flow 

it is necessary to have a rigorous definition of the entrainment rate. In any turbu- 
lent flow, the amount of turbulent fluid crossing any semi-infinite plane per- 
pendicular to the x direction per unit transverse width is 

where U is the x component of velocity and I is the intermittency function, which 
is unity a t  any point if the flow at that point is turbulent and zero otherwise. 
The mean rate of increase with x of the above quantity defines the entrainment 
rate aU: 

For two-dimensional flows this is the volume of fluid entrained per unit projected 
area. 

For the case where the interface position Y ( x ,  z ,  t )  is a single-valued function 
of ( x ,  z ) ,  this definition is clarified by the following derivation. Let dS be an ele- 
ment of area of the interface whose projection onto the x ,  z plane is dx dz .  The 
rate at  which fluid crosses this surface element is 

( a  Ypt  dx az + u ( Y ) d Y - v( Y )  ax dz + w ( Y )  d Y ax, 

and its value per unit projected area defines the instantaneous entrainment rate: 

ay aY aY 
@ ‘ - - + U ( Y ) - - V ( Y ) + W ( Y ) - .  

Ii- at ax ax 

A mass balance over the projected volume shows that 

%‘ Ii = -1 ax d Y  0 U a x + ; i ; ~ o  y w d z - V ( o ) .  

Assuming that the x , z  plane is either a wall or a plane of symmetry and that 
the flow is steady and two-dimensional, this equation becomes, on averaging, 
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Notice that v(y) is equal to neither T(m) nor v(7). The former is true if V is 
constant in the non-turbulent region while the latter follows if it is assumed that 
fluctuations in Y are small and that V and Y are uncorrelated. These results 
follow from the relation 

Of course the same can be said for U( Y )  aY/ax. 

Zone-average measurements 

The occurrence of the quantity in the expression for the entrainment rate 
prompts an investigation of the properties of the turbulent zone. The turbulent 
zone average of the velocity can be defined as 

BT = m/1, 

while the non-turbulent zone average is 

i7*, = U(1 -I)/(i -1). 

It follows that i7 = U I + U ( l - I )  = 1 i 7 T - t ( 1 - l ) D N .  (3) 
- -  

For the mean-square values of the velocity it is desirable to subtract the zone 
mean value first. Thus 

where u = U - 0. The non-turbulent mean-square velocity is 
- 
ux = u2( 1 - I ) / (  1 - j) - (IT - UN)? 

The following formula, relating the three intensities, may be easily derived: 

B 2 - 2  = I ( B $ - l & ) + ( I - 1 ) ( ? 7 ; - ~ ) .  (5)t 
_ _ _ -  

The quantities U ,  U I ,  u2, u21 and 1 were measured in the wall jet a t  x/d = 360, 
and the turbulent zone averages UT a n d 2  were computed from ( 2 )  and (4). The 
non-turbulent zone averages BAT and 

The results are collected in figure 2 .  Some points are worth noting. At the 
half-intermittency point the turbulent mean velocity exceeds the conventional 
velocity by 0-0709L (where Urn is the maximum velocity). The non-turbulent mean 
velocity becomes significant as the fully turbulent region is approached. Almost 
all the fluctuations are carried by the turbulent part of the flow. It is not known 
what the limiting values of the turbulent zone averages should be as the distance 
from the wall increases, nor to what limit the non-turbulent zone averages tend 
as the fully turbulent region is approached. Neither does there seem to be any 
way of predicting these limits. 

were then calculated from ( 2 )  and (5). 

t The expression (22),  relating these quantities, of Kovaszney, Kibens & Blackwelder 
(1970) is incorrect. 
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Measurements of the zone mean velocities were repeated at  two more down- 
stream stations, x/d = 90 and 180. These results are shown in figure 3, where 
gT - and aN - are presented. It is clear that the turbulent mean velocity 
profiles are not similar, so it can be concluded that the intermittent region of the 
wall jet flow does not have a self-preserving structure. This fact is also reflected 
in the intermittency profiles for the three stations. 

A possible measure of the attainment of a self-preserving structure is the posi- 
tion a t  which the intermittency factor is 0.5. According to this measure, self- 
preservation is reached at  x/d = 400 (Paizis 1972). Interestingly enough, the non- 
turbulent velocity profiles appear to be self-similar. 

The measurements reported here are subject to a number of possible errors 
and it is worth discussing their significance. At the outer edge of the jet the total 
mean velocity can differ significantly from the mean longitudinal velocity and 
the hot-wire probe will respond to this total velocity. A correction can be found 
by using the continuity equation. Judging by the results of Heskestad (19631, 
this correction becomes significant for y > 28. Wygnanski & Fiedler (1969) point 
out the need for long averaging times in order to reduce the scatter in measure- 
ments in the outer region of the jet. This is even more important for the deter- 
mination of the zone averages. For example, for the turbulent zone averages the 
actual time during which the average is determined is the integration period 
multiplied by the intermittency factor. The non-turbulent averages were ob- 
tained indirectly. The experiment could have been repeated with I replaced by 
1 - I  to obtain these terms directly and hence more accurately. Finally, for the 
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FIGURE 3. Variation of turbulent and non-turbulent mean velocity profiles with down- 
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determination of the intensities, the two terms in (3) for and in (5) for 
are of the same order and their subtraction will amplify any errors. The primary 
aim of this set of measurements was to  establish whether could be replaced 
by a in the expression for the entrainment rate, so no attempt has been made to 
correct for these various sources of error. 

Measurement of entrainment rates 

The expression (1)  for the entrainment rate can be written as 

and it will be shown experimentally that for the wall jet the second term can be 
neglected. For the self-preserving wall jet the maximum velocity Dm and the 
boundary-layer width 6 behave respectively as (Schwarz & Cosart 196 1) 

- 
U, = b(x-x,)-P, 6 = a(x-x,,), 

where a,  b,  p and xo are constants. Also, the integral 

of the mean velocity is independent ofx. 
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Substituting these forms into (6) gives 

The integral occurring in this expression was calculated for the three downstream 
stations mentioned previously and the results are given in figure 4. For the inte- 
gral, the largest value over the range of measurement occurs a t  x/d = 360 and is 
0.022, while for its derivative, this occurs a t  xld = 180 (taking the slope as the 
straight line joining the first two points) and is 0.63 x 10-4. Thus 

%$7m = J,a( 1 -p) - 0.02241 -p) - 0.011a. 

Since J ,  and ,5 are approximately 1.1 and + respectively, the error involved in 
neglecting the last two terms will be 4 yo or less. 

Replacing U I  with u amounts to setting the entrainment velocity equal to 
the normal velocity a t  infinity. The term neglected gives the difference between 
these two velocities and accounts for the longitudinal motion induced in the 
non-turbulent region. Since 

( V(W) - @ v ) / V ( a )  = 0.04, 

this represents a small fraction of the normal velocity a t  infinity. 

Entrainment rates in sev-preserving flows 
To calculate the entrainment rate for other flows, knowledge of the variation of 
U I  with downstream distance is needed. Unfortunately, there seem to be no such 
data published for any flows. Consequently some approximations must be made, 
and for this purpose it will be convenient to consider only approximately self- 
preserving flows. 

Boundary layers. An inspection of the zone-average measurements of Kovasz- 
nay et al. (1970) suggests that a reasonable assumption for the boundary layer 

- 
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might be that the mean velocity in the non-turbulent region is constant and so 
equal to the free-stream velocity: qv = am. With this assumption, 

uT= D - D m ( l - I )  = DmI-(Dm-D).  
The entrainment rat)e reduces to 

where S* is the displacement thickness of the boundary layer. This result was 
found by Corrsin & Kistler (1955). From (7), for the range of downstream distance 
covered in their experiments, the ratio of the entrainment velocity to the free- 
stream velocity decreased from about 0-015 to 0.01 1. By assuming that all length 
scales are proportional, the entrainment velocity for the experiments of Kovasz- 
nay et al. (1970) is estimated to be 0.012 Urn. 

The more usual form for the entrainment velocity, apparently first derived by 
Head (1 958), in effect assumes that the interface is steady and located a t  y = 6, 
the boundary-layer thickness, and that the mean velocity for y > 6 is constant. 
The result is that 7 is replaced by 6 in (7) .  For the measurements of Corrsin & 
Kistler (1955) this formula gives an entrainment velocity ranging from 0.0188 Dm 
to 0.01 14 om, while for those of Kovasznay et al. (1970) it gives 0.016 Ua. 

I n  applying his kinematical analysis of the interface to the results of Kovasz- 
nay et al. (1970), Phillips (1972) estimated that the propagation velocity of the 
interface should be 0.12 Dm. The propagation velocity is equal to the entrainment 
rate per unit area of surface, so expressed per unit projected area the value would 
be even higher. A probable explanation for this large discrepancy in entrainment 
rates is that the prediction of Phillips is for those large-scale motions which 
cause rapid entrainment. It is highly unlikely that these motions occur continu- 
ously, so the propagation velocity of Phillips represents a biased average, con- 
ditioned on the existence of a large entrainment rate. 

Two-climensioiaal wakes. Townsend (1 956, p. 163) presented some zone-average 
measurements of U in a wake and concluded that the turbulent mean velocity 
was approximately equal to the mean velocity. This would imply that U and I 
are uncorrelated. However, from his measurements it seems that an assumption 
equivalent to that made for a boundary layer, viz. UN = urn, would be equally 
appropriate. Both assumptions lead to the same result but since the latter yields 
the result more easily, it will be used. The velocity defect for a wake can be 
written as 

where U, is the velocity scale, usually the difference between the centre-line 
velocity and urn, 6 is a length scale andf is a universal function independent of x. 
Substituting this into (6) yields 

Drn - z7 = UOf(Y/S), 
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The second integral is independent of x, and since the two-dimensional wake is a 
constant Reynolds number flow, i.e. UoS = constant, the second term is zero, 
hence 

For the self-preserving wake, the following results hold (Townsend 1956, p. 137): 

%y = UmdFtdx. 

Uo/Vm = b’(x-x,)-+, S = u’(x-xJ*. 

All lengths are taken to be non-dirnensionalized with the cylinder diameter. The 
entrainment velocity is then 

and relative to U,, eY/U, = a’/2b’. 

Values for b’ are available (e.g. Townsend 1956, p. 135) while a’ can be esti- 
mated from Townsend’s results as presented by Corrsin & Kistler (1955). With 
a’ = 0-33 and b‘ = 0.1, @y/Uo = 1.7. 

- ay = *uma‘(x-xo)-:, 

Two-dimensional jets. According to the results of the previous section, for the 
wall jet and analogously for the free jet, the assumption that = V is satis- 
factory. This means that the non-turbulent velocity is constant and hence zero. 
Thus the assumption is equivalent to those made before. For self-preservation of 
the flow, 

All lengths here are normalized with the jet slot width. For the free jet p = 3, 
while this same value has been found to agree with the experimental results for 
wall jets (Schwarz & Cosart 1961). Our measurements (Paizis 1972) indicate that 

p 

6 = a(x-xo) ,  U, = b(x-xJ-8.  (8L ( 9 )  

+. The mean velocity can be written as 

.v = UOf(YlS), 
and the entrainment velocity becomes 

@y = Jld(UoG)/dx, (10) 

where J ,  is approximately 1.1 (Kohan 1968; Bradbury 1967). Thus (10) becomes, 
on substituting (8) and (9 ) ,  

and ay/U0 = 0.55a. 

For wall jets a = 0.086 (Paizis 1972), so 

aY = 0+55ab(~  - x,)-*, 

(4ly/U0 = 0.047, 

while for free jets a = 0.1 (Kohan 1968) and 

%ylU, = 0.055. 

Roundjets. For axisymmetric flows it is necessary to redefine the entrainment 
rate. A preferable alternative is to define the entrainment rate per unit axial 
length as 

20 F L n i  68 
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For the single-valued case, if R(x, 0, t )  is the location of the interface, 
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Q, = TR(aR/at - U,(R) + U,aR/ax). 

Note that this is the entrainment rate for the semi-infinite region 0 < 8 < T.  

The total entrainment is twice the quantity defined above. 
The self-preserving relations for a round jet are 

U,, = b(x-x,)-l, 

Using these, together with the assumption that U T  = us, we find 

6 = a(x-x,). 

Q, = rrJ;a2b, 

where J;  = lom %a (i) = 0.63 

(Bradbury 1967). Normalizing with U, and 6 and using a = 0.085 (Townsend 

1956, p. 184) yields Q,/U,S = nJ;a = 0.17. 

Com,parison of entrainment rates 
It is difficult to compare the entrainment rates for the various flows. Certainly 
the boundary layer does have extremely small entrainment rates. However, 
the large value for the two-dimensional wake is misleading for it is mostly a 
result of the small velocity scale used to normalize the entrainment velocity. 
On an absolute basis, i.e. if the free-stream velocity of the wake is equal to the 
exit velocity of the two-dimensional wall jet, the entrainment velocities are 
about equal. For the wake 

while for the wall jet, using b = 3.7U1, where U, is the jet exit velocity (Paizis 

f4Yy = 0.17Om(x-~,)-4, 

1972), f4Yv = O*18U1(X - x,)-k 

The free jet gives similar results but the round jet differs. In  fact, using b = 5U, 
(Wygnanski & Fiedler 1969) we find 

Q, = 0*07U1d, 

where d is the jet diameter. Thus the entrainment rate is constant. 

Negative and zero entrainment 
An intriguing question that emerges in this problem is whether or not the entrain- 
ment rate can be negative or zero. Since the generally accepted mechanism by 
which entrainment occurs is through the diffusion of vorticity to previously 
irrotational fluid, it  seems that the entrainment rate can only be positive. How- 
ever, as Moffatt (1965) observed, the dissipation of vorticity proceeds at  the same 
rate, so unless there exists a rate-of-strain field to amplify the newly acquired 
vorticity, it  will be dissipated and the entrainment rate will be effectively zero. 
This was demonstrated by Mobbs (1967) in what was essentially a zero 
momentum-deficit wake. He found that the mean width of the turbulent fluid 
actually decreased with downstream distance. Assuming that U and I were 
uncorrelated (or equivalently, uN = urn, as for self-preserving wakes) it follows 
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that the rate of entrainment was negative. This can only be ascribed to the decay 
of the turbulent field, perhaps enhanced in some way by the large fluctuations in 
the interface location. 

Another type of flow usually cited as an example of the occurrence of negative 
entrainment is the boundary layer in a favourable pressure gradient, where 
‘relaminarization’ takes place. Kovasznay (1971) has the pointed out that recent 
measurements (Blackwelder & Kovaszay 1972) show this to be a misnomer, the 
large increase in mean velocity accounting for the decay in the relative turbu- 
lence levels. 

This question can be resolved unequivocally by measurements of the variation 
of with x in the above-mentioned flows. 

4. Conclusions 
A rigorous definition of the entrainment rate of turbulent flows has been 

proposed as the mean of the instantaneous rate of increase of turbulent fluid 
with the downstream distance. This determines the mean rate of conversion of 
irrotational ambient fluid into turbulent fluid through the interface. The conven- 
tional definition of an entrainment rate has the form of the product of a charac- 
teristic velocity scale with the growth rate of a characteristic length scale, and 
may be related to the inflow of ambient fluid towards the turbulent flow. This 
definition is meaningless for flows that are not self-preserving and crude for seIf- 
preserving flows. Further, not all of this inflow is converted into turbulent fluid 
and a portion is ‘dragged along’ by the turbulent interface. Therefore, the two 
definitions are fundamentally different and a distinction must be made if com- 
parisons are to be made with theories that predict the propagation of the turbu- 
lent interface into non-turbulent fluid. 

The proposed entrainment rate can be measured for any turbulent flow 
using modern conditional sampling techniques and experimental results are 
given for a two-dimensional turbulent wall jet. Further, by making suitable 
assumptions about the turbulence properties, the entrainment rate can be 
expressed in terms of global parameters for various self-preserving flows. For 
each case considered, the basic assumption was essentially the same, viz., that 
the non-turbulent mean velocity was constant. It then followed that the entrain- 
ment velocity was a self-preserving quantity, and the final expressions were 
generally similar to the entrainment constant introduced by Townsend (1 966). 
However, the definition of the entrainment rate (1) is different from that of the 
entrainment constant, which depends on assuming a lack of correlation between 
flow variables for significance. 

In  addition, turbulent zone averages have been presented for the turbulent 
wall jet. It was found that the difference between the turbulent and non- 
turbulent mean velocities at  the half-intermittency point was 0. 14um. 
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